
Binary Table Extension to FITS:

A Proposal

W. D. Cotton, N.R.A.O.

DRAFT 8 April 1991

ABSTRACT

This paper describes the FITS binary tables which are a exible

and e�cient means of transmitting a wide variety of data structures.

Table entries may be a mixture of a number of numerical, logical and

character data types. In addition, each entry is allowed to be a single

dimensioned array. Numeric data are kept in IEEE formats.

1 Introduction

The Flexible Image Transport System (FITS) (Wells et al. 1981 and Greisen

and Harten 1981) has been used for a number of years both as a means of trans-

porting data between computers and/or processing systems and as an archival

format for a variety of astronomical data. The success of this system has re-

sulted in the introduction of enhancements. In particular, considerable use has

been made of the records following the \main" data �le. Grosb�l et al. 1988 in-

troduced a generalized header format for extension \�les" following the \main"

data �le but in the same physical �le. Harten et al. 1988 de�ned an ASCII table

structure which could convey information that could be conveniently printed as

a table. This paper generalizes the ASCII tables and de�nes an e�cient means

for conveying a wide variety of data structures as \extension" �les.

2 Binary tables

The binary tables are tables in the sense that they are organized into rows and

columns. They are multi-dimensional since an entry, or set of values associated

with a given row and column, can be an array of arbitrary size. These values

are represented in a standardized binary form. Each row in the table contains

an entry for each column. This entry may be one of a number of di�erent data

types, 8 unsigned integers, 16 or 32 bit signed integers, logical, character, bit,

32 or 64 bit oating point or complex values. The data type and dimensionality

are independently de�ned for each column but each row must have the same

structure. Additional information associated with the table may be included in

the table header as keyword/value pairs.

1



The binary tables come after the \main" data �le, if any in a FITS �le

and follow the standards for generalized extension tables de�ned by Grosb�l et

al. 1988. The use of the binary tables requires the use of a single additional

keyword in the main header:

1. EXTEND (logical) if true (ASCII 'T') indicates that there may be exten-

sion �les following the data records and, if there are, that they conform

to the generalized extension �le header standards.

3 Table Header

The table header begins at the �rst byte in the �rst record following the last

record of main data (if any) or following the last record of the previous extension

�le. The format of the binary table header is such that a given FITS reader

can decide if it wants (or understands) it and can skip the table if the reader

decides it doesn't.

A table header consists of one or more 2880 8-bit byte logical records each

containing 36 80-byte \card images" in the form:

keyword = value / comment

where the keyword begins in column 1 and contains up to eight characters and

the value begins in column 10 or later. Keyword/value pairs in binary table

headers conform to standard FITS usage.

The number of columns in the table is given by the value associated with

keyword TFIELDS. The type, dimensionality, labels, units, blanking values, and

display formats for entries in column nnn may be de�ned by the values associated

with the keywords TFORMnnn, TTYPEnnn, TUNITnnn, TNULLnnn, and

TDISPnnn. Of these only TFORMnnn is required but the use of TTYPEnnn

is strongly recommended. An entry may be omitted from the table, but still

de�ned in the header, by using a zero element count in the TFORMnnn entry.

The required keywords XTENSION, BITPIX, NAXIS, NAXIS1, NAXIS2,

PCOUNT, GCOUNT and TFIELDS must be in order; other keywords follow

these in an arbitrary order. The required keywords in a binary table header

record are:

1. XTENSION (character) indicates the type of extension �le, this must be

the �rst keyword in the header. This is 'BINTABLE' for the binary tables.

2. BITPIX (integer) gives the number of bits per \pixel" value. For binary

tables this value is 8.

3. NAXIS (integer) gives the number of \axes"; this value is 2 for binary

tables.

2



4. NAXIS1 (integer) gives the number of 8 bit bytes in each \row". This

should correspond to the sum of the values de�ned in the TFORMnnn

keywords.

5. NAXIS2 (integer) gives the number of rows in the table,

6. PCOUNT (integer) gives the number of \random" parameters before each

group. This is 0 for binary tables.

7. GCOUNT (integer) gives the number of groups of data de�ned as for the

random group main data records. This is 1 for binary tables.

8. TFIELDS (integer) gives the number of �elds (columns) present in the

table.

9. TFORMnnn

1

(character) gives the size and data type of �eld nnn. Al-

lowed values of nnn range from 1 to the value associated with TFIELDS.

Allowed values of TFORMnnn are of the form rL, rX, rI, rJ, rA, rE, or

rD, rB, rC (logical, bit, 16-bit integers, 32-bit integers, characters, single

precision and double precision, unsigned bytes and complex = pair of sin-

gle precision values) where r=number of elements. If the element count is

absent, it is assumed to be 1. A value of zero is allowed.

10. END is always the last keyword in a header. The remainder of the FITS

logical (2880 byte) record following the END keyword is blank �lled.

The optional standard keywords are:

1. EXTNAME (character) can be used to give a name to the extension �le

to distinguish it from other similar �les. The name may have a hierarchal

structure giving its relation to other �les (e.g., \map1.cleancomp")

2. EXTVER (integer) gives a version number which can be used with EXTNAME

to identify a �le.

3. EXTLEVEL (integer) speci�es the level of the extension �le in a hierarchal

structure. The default value for EXTLEVEL should be 1.

4. TTYPEnnn (character) gives the label for �eld nnn. Any number of char-

acters are allowed but the �rst 8 should be unique.

5. TUNITnnn (character) gives the physical units of �eld nnn.

6. TSCALnnn (oating) gives the scale factor for �eld nnn. True value =

FITS value � TSCAL + TZERO. Note: TSCALnnn and TZEROnnn are

not relevant to A, L, or X format �elds. Default value is 1.0.

1

The \nnn" in keyword names indicates an integer index in the range 1 - 999. The integer

is left justi�ed with no leading zeroes, e.g. TFORM1, TFORM19, etc.

3



7. TZEROnnn (oating) gives the o�set for �eld nnn. (See TSCALnnn.)

Default value is 0.0.

8. TNULLnnn (integer) gives the unde�ned value for integer (B, I, and J)

�eld nnn. Section 5 discusses the conventions for indicating invalid data

of other data types.

9. TDISPnnn (character) gives the Fortran format suggested for the display

of �eld nnn. Each byte of bit and byte arrays will be considered to be

a signed integer for purposes of display. The allowed forms are Aw, Lw,

Iw.m, Fw.d, Ew.d, Gw.d, and Dw.d where w is the width of the displayed

value in characters, m is the minimum number of digits possibly requiring

leading zeroes and d is the number of digits to the right of the decimal.

All entries in a �eld are displayed with a single, repeated format. Any

TSCALnnn and TZEROnnn values will be applied before display of the

value. Note that characters and logical values may be null (zero byte)

terminated.

10. TDIMnnn (character) This keyword is reserved for use by the convention

described in the appendix.

11. AUTHOR (character) gives the name of the author or creator of the table.

12. REFERENC (character) gives the reference for the table.

Nonstandard keyword/value pairs adhering to the FITS keyword standards

are allowed although a reader may chose to ignore them.

4 Conventions for Multidimensional Arrays

There is commonly a need to use data structures more complex than the one

dimensional de�nition of the table entries de�ned for this table format. Multidi-

mensional arrays, or more complex structures, may be implemented by passing

dimensions or other structural information as either column entries or keywords

in the header. Passing the dimensionality as column entries has the advantage

that the array can have variable dimension (subject to a �xed maximum size

and storage usage). A convention is suggested in the Appendix.

5 Table Data Records

The binary table data logical records begin with the next record following the

last header record. Data for a given column are contiguous and in order of in-

creasing array index. Column entries are arranged in order of increasing column

number. All data for a given row are contiguous and rows are given in order of

increasing row number. All 2880 byte logical records are completely �lled with

4



no extra bytes between column entries or rows. Column entries or rows do not

necessarily begin in the �rst byte of a 2880 byte record. Note that this implies

that a given word may not be aligned in the record along word boundaries of its

type; words may even span 2880 byte records. The last 2880 byte record should

be zero byte �lled past the end of the valid data.

If word alignment is ever considered important for e�ciency considerations

then this may be accomplished by the proper design of the table. The simplest

way to accomplish this is to order the columns by data type (D, C, E, J, I, B, L,

A, X) and then add su�cient padding in the form of a dummy column of type

B with the number of elements such that the size of a row is either an integral

multiple of 2880 bytes or an integral number of rows is 2880 bytes.

The data types are de�ned in the following list (r is the number of elements

in the entry):

1. rL. A logical value consists of an ASCII \T" indicating true and \F"

indicating false. A null character (zero byte) indicates an invalid value.

2. rX. A bit array will start in the most signi�cant bit of the byte and

the following bits in the order of decreasing signi�cance in the byte. Bit

signi�cance is in the same order as for integers. A bit array entry consists

of an integral number of bytes with trailing bits zero.

No explicit null value is de�ned for bit arrays but if the capability of

blanking bit arrays is needed it is recommended that one of the following

conventions be adopted: 1) designate a bit in the array as a validity bit, 2)

add an L type column to indicate validity of the array or 3) add a second

bit array which contains a validity bit for each of the bits in the original

array.

3. rB Unsigned 8-bit integer with bits in decreasing order of signi�cance.

Signed values may be passed with appropriate values of TSCALnnn and

TZEROnnn.

4. rI. A 16-bit two's complement integer with the bits in decreasing order of

signi�cance. Unsigned values may be passed with appropriate values of

TSCALnnn and TZEROnnn.

5. rJ. A 32-bit two's complement integer with the bits in decreasing order

of signi�cance. Unsigned values may be passed with appropriate values of

TSCALnnn and TZEROnnn.

6. rA. Character strings are represented by ASCII characters in their natural

order. Character strings may be terminated before its explicit length

by an ASCII NULL character. An ASCII NULL as the �rst character

will indicate a unde�ned string i.e. a NULL string. Legal characters are

printable ASCII characters in the range ' ' (hex 20) to '~' (hex 7E)

5



inclusive and ASCII NULL after the last valid character. Strings the full

length of the �eld need not be NULL terminated.

7. rE. Single precision oating point values are in IEEE 32-bit precision

format in the order: sign bit, exponent and mantissa in decreasing order

of signi�gance. The IEEE NaN (not a number) values are used to indicate

an invalid number; a value all bits set is recognized as a NaN. All IEEE

special values are recognized.

8. rD. Double precision oating point values are in IEEE 64-bit precision

format in the order: sign bit, exponent and mantissa in decreasing order

of signi�gance. The IEEE NaN values are used to indicate an invalid

number; a value with all bits set is recognized as a NaN. All IEEE special

values are recognized.

9. rC Complex values; these consist of a pair of IEEE 32-bit precision oating

point values with the �rst being the real and the second the imaginary

parts.

6 Example Binary Table Header

The following is an example of a binary table header which has 19 columns using

a number of di�erent data types and dimensions. Columns labeled \IFLUX",

\QFLUX", \UFLUX", \VFLUX", \FREQOFF", \LSRVEL" and \RESTFREQ"

are arrays of dimension 2. Columns labeled \SOURCE" and \CALCODE" are

character strings of length 16 and 4 respectively. The nonstandard keywords

\NO IF", VELTYP", and \VELDEF" also appear at the end of the header.

The �rst two lines of numbers are only present to show card columns and are

not part of the table header.

1 2 3 4 5 6

1234567890123456789012345678901234567890123456789012345678901234

XTENSION= 'BINTABLE' / Extension type

BITPIX = 8 / Binary data

NAXIS = 2 / Table is a matrix

NAXIS1 = 184 / Width of table in bytes

NAXIS2 = 1 / Number of entries in table

PCOUNT = 0 / Random parameter count

GCOUNT = 1 / Group count

TFIELDS = 19 / Number of columns in each row

EXTNAME = 'AIPS SU ' / AIPS source table

EXTVER = 1 / Version number of table

TFORM1 = '1I ' / Fortran format of column 1

TTYPE1 = 'ID. NO. ' / Type (label) of column 1

TUNIT1 = ' ' / Physical units of column 1

TFORM2 = '16A ' / Fortran format of column 2

6



TTYPE2 = 'SOURCE ' / Type (label) of column 2

TUNIT2 = ' ' / Physical units of column 2

TFORM3 = '1I ' / Fortran format of column 3

TTYPE3 = 'QUAL ' / Type (label) of column 3

TUNIT3 = ' ' / Physical units of column 3

TFORM4 = '4A ' / Fortran format of column 4

TTYPE4 = 'CALCODE ' / Type (label) of column 4

TUNIT4 = ' ' / Physical units of column 4

TFORM5 = '2E ' / Fortran format of column 5

TTYPE5 = 'IFLUX ' / Type (label) of column 5

TUNIT5 = 'JY ' / Physical units of column 5

TFORM6 = '2E ' / Fortran format of column 6

TTYPE6 = 'QFLUX ' / Type (label) of column 6

TUNIT6 = 'JY ' / Physical units of column 6

TFORM7 = '2E ' / Fortran format of column 7

TTYPE7 = 'UFLUX ' / Type (label) of column 7

TUNIT7 = 'JY ' / Physical units of column 7

TFORM8 = '2E ' / Fortran format of column 8

TTYPE8 = 'VFLUX ' / Type (label) of column 8

TUNIT8 = 'JY ' / Physical units of column 8

TFORM9 = '2D ' / Fortran format of column 9

TTYPE9 = 'FREQOFF ' / Type (label) of column 9

TUNIT9 = 'HZ ' / Physical units of column 9

TFORM10 = '1D ' / Fortran format of column 10

TTYPE10 = 'BANDWIDTH ' / Type (label) of column 10

TUNIT10 = 'HZ ' / Physical units of column 10

TFORM11 = '1D ' / Fortran format of column 11

TTYPE11 = 'RAEPO ' / Type (label) of column 11

TUNIT11 = 'DEGREES ' / Physical units of column 11

TFORM12 = '1D ' / Fortran format of column 12

TTYPE12 = 'DECEPO ' / Type (label) of column 12

TUNIT12 = 'DEGREES ' / Physical units of column 12

TFORM13 = '1D ' / Fortran format of column 13

TTYPE13 = 'EPOCH ' / Type (label) of column 13

TUNIT13 = 'YEARS ' / Physical units of column 13

TFORM14 = '1D ' / Fortran format of column 14

TTYPE14 = 'RAAPP ' / Type (label) of column 14

TUNIT14 = 'DEGREES ' / Physical units of column 14

TFORM15 = '1D ' / Fortran format of column 15

TTYPE15 = 'DECAPP ' / Type (label) of column 15

TUNIT15 = 'DEGREES ' / Physical units of column 15

TFORM16 = '2D ' / Fortran format of column 16

TTYPE16 = 'LSRVEL ' / Type (label) of column 16

TUNIT16 = 'M/SEC ' / Physical units of column 16

TFORM17 = '2D ' / Fortran format of column 17

TTYPE17 = 'RESTFREQ ' / Type (label) of column 17

TUNIT17 = 'HZ ' / Physical units of column 17

7



TFORM18 = '1D ' / Fortran format of column 18

TTYPE18 = 'PMRA ' / Type (label) of column 18

TUNIT18 = 'DEG/DAY ' / Physical units of column 18

TFORM19 = '1D ' / Fortran format of column 19

TTYPE19 = 'PMDEC ' / Type (label) of column 19

TUNIT19 = 'DEG/DAY ' / Physical units of column 19

NO_IF = 2

VELTYP = 'LSR '

VELDEF = 'OPTICAL '

END

7 Acknowledgments

The author would like to thank E. Greisen, D. Wells, P. Grosb�l, B. Hanisch,

E. Mandel, E. Kemper and B. Schlesinger and many others for invaluable dis-

cussions and suggestions.

8 References

Wells, D. C., Greisen, E. W., and Harten R. H. 1981, \FITS: A Flexible Image

Transport System", Astron. Astrophys. Suppl, vol. 44, pp 363 - 370.

Greisen E. W. and Harten R. H., 1981, \An Extension of FITS for Small Arrays

of Data", Astron. Astrophys. Suppl, vol. 44, pp 371 - 374.

Astronomy and Astrophysics Supplement Series, vol. 44, pp 371 - 374.

Grosb�l, P., Harten, R. H., Greisen, E. W., and Wells, D. C. 1988, \Generalized

Extension and Blocking Factors for FITS", Astron. Astrophys. Suppl., vol. 73,

pp 359-364.

Harten, Grosb�l, Greisen and Wells 1988, \The FITS tables Extension", Astron.

Astrophys. Suppl., vol. 73, pp 365-372.

8



Appendix

\Multidimensional Array" Convention

It is anticipated that binary tables will need to contain data structures more

complex that those describable by the basic notation. Examples of these are

multidimensional arrays and nonrectangular data structures. Suitable conven-

tions may be de�ned to pass these structures using some combination of key-

word/value pairs and table entries to pass the parameters of these structures.

One case, multidimensional arrays, is so common that it is prudent to de-

scribe a simple convention. The \Multidimensional array" convention consists

of the following: any column with a dimensionality of 1 or larger will have an

associated character keyword TDIMnnn='(l,n,m...)' where l, n, m ...are the

dimensions of the array. The size implied by the TDIMnnn keyword will equal

the element count speci�ed in the TFORMnnn keyword. The adherence to this

convention will be indicated by the presence of a TDIMnnn keyword. This con-

vention is optional and will not preclude other conventions. This convention is

not part of the proposed binary table de�nition.

9


